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Abstract

A two-stage model reduction methodology, combining the classical Component Mode
Synthesis (CMS) method and the newly developed Enhanced Projection and Assembly
(EP&A) method, is proposed in this research. The first stage of this methodology, called
the COmponent Modes Projection and Assembly model REduction (COMPARE) method,
involves the generation of CMS mode sets, such as the MacNeal-Rubin mode sets. These
mode sets are then used to reduce the order of each component model in the Rayleigh-Ritz
sense. The resultant component models are then combined to generate reduced-order system
models at various system configurations. A composite mode set which retains important
system rﬁodes Vat all system configurations is then selected from these reduced-order system
models. In the second stage, the EP&A model reduction method is employed to reduce
further the order of the system model generated in the first stage. The effectiveness of the
COMPARE methodology has been successfully demonstrated on a high-order, finite-element

model of the cruise-configured Galileo spacecraft.

1. Background and Motivation

Multibody dynamics simulation packages are gaining in popularity among dynamists
for the simulation and analysis of systems of interconnected bodies (some or all of which are
flexible). One such program, DISCOS,! was used in the development of control systems on

board the Galileo spacecraft. The dual-spin Galileo spacecraft was modeled as a three-body
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system, consisting of a flexible spinning rotor, a flexible stator, and a rigid scan platform.

For complex systems such as the Galileo spacecraft, practical considerations (e.g., sim-
ulation time) impose limits on the number of modes that each flexible body can retain in a
given simulation. Modal truncation procedures must be used to select and retain a limited
number of “important” modes which capture the salient features of the component dynam-
ics. The Enhanced Projection and Assembly (EP&A)®7 technique is one way of performing
this task.

The EP&A method,®” is a model reduction methodology for articulated, multi-flexible
body systems. In this method, a composite mode set, consisting of “important” system
modes from all system configurations of interest, and not just from one particular system
configuration, is first selected. It is then augmented with static correction modes before be-
ing “projected” onto the component models to generate reduced-order component models.
To generate the composite mode set, eigenvalue problems concerning the full-order system
models, at all configurations of interest, must be solved repetitively. This is a drawback of
the EP&A method because solving large eigenvalue problems can be costly. To overcome
this difficulty, a two—sfage model reduction methodology, combining the classical Compo-
nent Mode Synthesis (CMS) method and the Enhanced Projection and Assembly method
(EP&A), is proposed in this research.

The stages involved in the proposed technique, to be called the COmponent Modes
Projection and Assembly model REduction (COMPARE) method, are illustrated in Fig.
1. First, CMS mode sets, such as the MacNeal-Rubin mode sets, are generated and used
to reduce the order of each component model in the Rayleigh-Ritz sense. These compo-
nent mode sets are then as—semble'd"{lsing the interface compatibility conditions to generate
reduced-order system models at various system configurations. The order of these reduced-

order system models is typically smaller than that of the full-order system model.

In the second stage, the newly developed EP& A model reduction method is employed to
reduce further the order of the system model generated in the first stage. As described above,
the composite mode set is augmented with static correction modes before being projected
on the CMS—generaf'ed component models to generate the final reduced-order system model.
In this way, COMPARE retains the merits of both the CMS and EP&A methods, without
their demerits. The effectiveness of COMPARE will be verified using a cruise-configured

Galileo spacecraft model.
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2. Component Mode Synthesis Method Revisited??®

The Component Mode Synthesis (CMS) method is a Rayleigh-Ritz based approximation
method that is commonly used to analyze linear, high-order structural dynamics problems.
To use this method, the structure is first subdivided into a number of components (or
substructures), and a Ritz transformation is employed to reduce the model orders of these
substructures. Many component mode sets may be used to perform this reduction but
the MacNeal-Rubin (M-R) and Craig-Bampton (C-B) mode sets were shown to have good
convergence properties in the sense of CMS. Once reduced, the reduced-order component
models are then coupled using the interface compatibility conditions to form the reduced-

order system model.

Since the Craig-Bampton and MacNeal-Rubin mode sets will be used in the present
research to reduce the orders of the component models, their constructions are first briefly
reviewed. To this end, consider a multi-flexible body structure as depicted in Fig. 2.
The undamped motion of each component of the structure can be described by a matrix

differential equation
MpnTa + Kpnzn = Fna (1)

where z, is an n x 1 displacement vector, and My, and K,, are n X n mass and stiffness
matrices of the component, respectively. Note that the matrix dimensions are indicated by
the matrix subscripts. The n x 1 force vector acting on the component is denoted by Fy. A

similar equation can also be written for component B.

To generate the C-B or M-R mode set, the last equation is partitioned as follows :

Mi; M, I; N K, Kij z; | _ | Fi
MJ',' ij fiJ’ I\’j,’ I\’jj Ty - 0 ’

where z; and z; represent the interface and interior coordinates, respectively.
2.1 Craig-Bampton Mode Set

The Craig-Bampton mode set is generated by augmenting a low-frequency subset of the
fixed interface (I/F) normal modes with a set of static-shape functions termed constraint
modes. The first k fixed I/F normal modes ®;1, and the ordered eigenvalue matrix Ay are

related by the following relation :

—AfjjfbjkAkk+I\'jjq>jk =0. (3)
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There are ways to decide on the number of modes to be kept in ®,r. One way is to
keep all modes whose frequencies are less than twice a characteristic frequency of the system
(e.g., control bandwidth).? The above determined normal modes are then augmented with 7
constraint modes, where constraint modes are static-shape functions that result by imposing
unit displacement on one coordinate of the i-set while holding the remaining coordinate in
that set fixed. It can be shown that the interior displacement for these constraint modes is
given by?® .
Vi =-K;;' Kji. (4)

O I
Pk ;i

The C-B mode set is

which is then used to reduce the full-order component model.

2.2 MacNeal-Rubin Mode Set

In a manner similar to generating the Craig-Bampton mode set, the MacNeal-Rubin
mode set is generated by augmenting a low-frequency subset of the free I/F normal modes
with a set of static force response functions termed residual modes. The first k free I/F
normal modes ®,x, and the ordered eigenvalue matrix A, are related by the following
relation :

—A[nnénkAkk + I\’nnq)nk =0. (5)

The kept eigenvector matrix ®,x, which has been normalized with respect to the mass
matrix, may be partitioned into its rigid-body and flexible parts: [®n, ®nys]. Let Asy be the
eigenvalue matrix associated with the kept flexible modes. Then, the residual modes may

be determined by
‘Ilna = (PrTn Snn Pnn - q)nf A;jl' q’:f)Fﬂa ’ (6)

where Pnp = Inn — Mpn 0y 8T, Spn is the “pseudo” flexibility matrix of the component,®
defined as follows. Let the set of all physical coordinates be divided into three subsets: r, a,
and w. The r set may be any statically determinate constraint set which provides restraint
against rigid-body motion. The a set consists of coordinates where unit forces are to be
applied to define attachment modes (i.e., at the interface coordinates, and at coordinates
where external forces are applied). Finally, the w set consists of the remaining coordinates

in z. Using these definitions, the component stiffness matrix K, is partitioned as follows :
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krr kra krw
kar kaa kaw
kwr kwa kww

The pseudo-flexibility matrix Snn is now given by a matrix of the form®

0 0 0
0 [Kea kaw]
0 kwa kww
Finally, the matrix Fy, is given be [0ar, Taa, Oaw]T, where the identity matrix I,, is asso-

ciated with the a interface coordinates. The M-R mode set is [®,x ¥na|, which is then used

to generate a reduced-order model for the component.

3. A Component Modes Projection and Assembly Model Reduction (COM-
PARE) Methodology

Once CMS-based reduced-order component models are generated, they are assembled
using the interface compatibility conditions to produce reduced-order system models at vari-
ous system configurations of interest. Since the orders of these reduced-order system models
are typically smaller than those of the full-order system models, we have accomplished the
first of the two model reduction steps of the COMPARE methodology. However, note that
these CMS-generated reduced-order system models were obtained without using knowledge
of any system-level input-output information. This drawback is remedied in the second
stage, in which the EP&A methodology® 7 is used to further reduce the order of the models
generated in the first stage. Since the EP&A methodology has been described elsewhere,’’

it will only be briefly reviewed here.

Consider a system with two flexible components. The undamped motion of component
A, as described by either its M-R or C-B mode set, is given by
I}’Pﬁ;‘ + A;;‘p 77;4 = G;)Aauf ’

A A_A
Yp =pr77p .

(7)

Here, 17;‘ and A”,‘p are the generalized coordinates and the diagonal stiffness matrix of com-
ponent A, respectively. The dimension of n;,“ is p. The matrix G;}a is an control distribution
matrix, and u2 is an @ x 1 control vector. Similarly, the matrix H,;‘:, is an output distri-
bution matrix, and y;! is an b x 1 output vector. Similar equations can also be written for

component B.
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The system equations of motion at a particular articulation angle o may be constructed
using these component equations, and enforcing displacement compatibility conditions at
the component interface. To this end, let P(«) =[P£T(a), PquT (a)]? be any full-rank matrix
mapping a minimal system state 7. into

] =[] v ®
¥ PfR(a)] 7
where 7, is an e x 1 reduced-order system coordinate, and e = p+ g — 7 (7 is the number of
I/F constraint relations). For ease of notation, the dependencies of the matrices Ptfg_, Pﬁ ,
77;?, nf, and 7. on « are dropped in the sequel. Substituting n;," = P;l ne and n(]B = qu Ne
into (7) and the corresponding equations for component B, pre-multiplying the resultant

equations by Pf: and PqB;T, respectively, and summing the resultant equations gives

Meeﬁe + I\"cene = Geaua ’ (8(1)
Ys = HseTIe 3 (Sb)

where Me., Kee, Gea, and H,,, all functions of a, are given by
M..=PA PA + P2 PE,
Kee= PA ALPA+ PETABPE,
Gea = PA G4 + PE'GE,,
A pA
Hse = [prppe] )

where y, = [y{;‘T y,BT]T, and s = b + . To arrive at the equation for G.,, we have as-
sumed that uaA = uf = u,. Otherwise, the term G.q u, in (8a) should be replaced by
[P;lT GpAa, PqB;TGfa] [uaAT , ufT]T. Since M., is symmetric and positive-definite while K. is
symmetric and positive semi-definite, a transformation ®.. that diagonalizes M., and L.
simultaneously can always be found. Let ¢, be the corresponding generalized coordinate,
ie., 7 = Pee . Substituting this relation into (8a), and pre-multiplying the resultant

equation by @7, gives

Iee(Ze + Aee¢e = éeaua )

i} (9)
Yys = Hyede s

—

where Q’Z;]Wee@ee = L., Hye = Hye®ee, Gea = @Z;G’ea, and where A, = @Z;Keeq)ee

contains the undamped, reduced-order system eigenvalues along its diagonal. Equation (9)
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represents the reduced-order system model obtained from the first stage of the COMPARE
methodology.
The EP&A method is used in the second stage of COMPARE. With the EP&A method,

only k of the system’s e modes are kept while the remaining ¢ (= e — k) modes are removed.
The kept mode set is a composite mode set, consisting of “important” system modes from
all system configurations of interest, and not just from one particular configuration. With

this understanding, we have

MNe = q’eeqse = [Qek q)et] [(Z,:] = ¢6k¢k’ (10)

where ¢ and ¢, are generalized coordinates associated with the “kept” and “truncated”

modes, respectively, and @i and ®.; the corresponding eigenvector matrices.

The composite mode set ®.x may now be projected onto the CMS-generated compo-
nent models: nl‘,“ = Plﬁ O o = \Il]fkqﬂf. Here, #{ denotes reduced sets of generalized
coordinates of component A. The substitution of the last relation into (7) produces the

“constrained” equations of motion for component A:
gAT pA GA JATAA pA 44 = gAT oA 11
pk * pk d)k + pk *pp * pk ¢k — *¥pkVpa Ug - ( )

A second reduced-order system model can now be constructed using (11), a similar
equation for component B, and the displacement compatibility conditions at the component
I/F. The order of this new reduced-order model is smaller than that obtained from the first
step (cf. (9)) due to the truncation of “¢” modes in (10). In addition, it has been proven
that the modes retained in the composite mode set &, are captured exactly by the resultant
reduced-order system model (with a number of extraneous modes 3,4,5,6,7) " However, the

static gain of the resultant reduced-order system model is not the same as that given by
(9).7

Two different approaches were introduced in Lee and Tsuha' to preserve the static
gain of the system described by (9) in the second reduced-order system model. The first
approach involves augmenting the k “kept” modes of the system with an additional a modes
so as to create a statically complete mode set. The enlarged mode set is then “projected”
onto the components, and the reduced components are assembled as usual.” In the second
approach, the k “kept” modes of the system are first projected onto the components. After

the projections, the reduced-component mode sets are each augmented with static correction
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modes. The augmented mode sets are then used to reduce the components, and the resultant

component models are assembled to generate the reduced-order system model. The details
of these approaches are given below.
3.1 Component-level Augmentation Techniques®’

In the component-level augmentation approach, the k£ “kept” modes are first projected

onto the components. We first write
A_qgA —=A A _ ~v~A A _ A A A
My = \I}pk“kk Ve = Tpkvk - [Tpr Tpf]yk ?

(12)
B —B _B B B B +v~B, B
77;3 = ‘I'qk “kk Vk =qu Vi = [Tqr qu] Vi >

where Z¢, is the eigenvector matrix associated with an eigenvalue problem of (11), and v
is the corresponding generalized coordinate. The transformation matrices T;fk and Tfk are
defined in (12). Matrix partitions T{}r and T;}f denote eigenvectors associated with the
rigid-body and flexible modes of the projected component A model. Similar partitions are

made for the eigenvectors associated with the projected component B model.

Let T}’,‘r, T;‘f, etc. be normalized such that

AT vA __ AT A A yvA _
TPr Tpr - Irr ] Tpr APP Tpr - 0”” (13)
AT vA _ AT VA vA _ 3 A
Tpf Tpf = Iyy, Tpf App Tpf - Aff’
where /—\ff is an eigenvalue matrix associated with the projected flexible modes of component
A. Similar expressions can also be written for component B. Using the matrices defined in
(12-13), residual modes,® described in Section 2.2, may once again be used to augment the

projected mode sets of the components. From (6), the residual modes are given by

A _ (pAT oA pA A FATY AT A
Tpa —(Ppp SppPpp_TpfAff Tpf )Fpa’ (14)
where
DA _ TA A ~AT
Ppp - IPP - Tpr Tpr > (15)

and 5’;} is the “pseudo” flexibility matrix of component A. If we assume that the diagonal

stiffness matrix of component A (see A;}p in (7)) is ordered so that all the rigid-body modes

(with zero frequency) are given first, then 5’;‘}, is given by

[8 A;i"] ' (16)
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Here p = p - r is the total number of flexible modes in the CMS mode set of component A.
In (14), the matrix F}ﬂ, is given by [Oar, faa, Oap—r-a ]T. Similar expressions can also be

written for component B.

The projected mode sets T;}k and Tfk can now be supplemented with the residual
modes

’7;)4 = [T;?k T;}a]

pv v

A
v A
1/5‘] =Y4 v
5 (17)
v
? =115 1) [ V5| = TR,
a

where v and v? are generalized coordinates associated with the residual modes. Using the

Ritz transformations suggested in (17), the new component-projected equations of motion

are
TATYA A L YATAA YA LA = YATGA Y (18)
pv “pv v pv lpptpv Yv T -~ pv Ypatan
T - T B B BT ~B
Y5 T8, 0+ Y5 A Tq vi =Yg Gratta- (19)

Using (18-19), the reduced-order system equations of motion at a particular system
configuration a can now be formed by enforcing displacement compatibility at the interface

Chany + Cq(a)ng =0, (20)

where C{‘;, and C,-B; are matrices that establish the constraint relations between the gener-
alized coordinates of CMS generated component models, and ¢ is the number of constraint

relations. Using (17), (20) becomes

v

[cAYA CBYE [ 5] = [Dqc] [”34] =0 (21)
ip - pv ig * qu Uf - ic V[I)B =Y,

where [D;,] is defined in (21), and ¢ = 2v. To construct the reduced-order systerﬁ model, we

partition the “compatibility” matrix [D;c] using the Singular Value Decomposition (SVD)

technique
A~ A B~-B vT
[Dic] = [CH Y50y CigTqu ], = (Uil [Zii, Oid] vl (22)
where d = ¢ - 1, and [0;4] is an ¢ x d null matrix. We can now write?®7
b |7l
v = Pcd Vd = vd vV s 23
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where [Pey) = [Ved] (cf. (22)) is a full column rank mapping matrix, and vy denotes a
minimum set of generalized coordinates of a statically complete reduced-order system. Sub-
stituting v = [PA]va and v2 = [PE]vq into (18) and (19), pre-multiplying the resultant

equations by PvﬁT and PflT, respectively, and summing the resultant equations give

MyaVq + Kgqva = Gaalla, (24)
ys = Hsqva, (25)

where Myq, K44, Gaa, and H,q, all functions of a, are given by

.
My = PA YA YAPA + PE TB YE PE, (26)
I\’dd = sz}iT T;;q:ApAp'rﬁvPaﬁ + PlgTvaTAZvaplfi ’ (27)
Gaa = P& Y1 G+ PEYE GE,, (28)
HATA PA
Hu=| B8 o8 29
g ng,ﬁ,aﬁ} 29

Since M4 is symmetric and positive-definite while K4y is symmetric and positive semi-
definite, a transformation ®44 that diagonalizes Myq4 and RKyqy simultaneously can always
be found. Let ®44 be normalized with respect to the mass matrix, and let x4 be the

corresponding generalized coordinate, 1.e.,
vi = Paaxd- (30)

Substituting (30) into (24-25) and pre-multiplying the resultant equation by ®T, give

Ija¥a + Adaxd = Gaalla, (31)
Ys = I—{sdrlda (32)
where
Hy,g = Hya®aa, (33)
Gia = 74Gua (34)
Aga =¥ KaaPaa. (35)

Here Agq is a diagonal matrix with the undamped, reduced-order system squared frequencies

along its diagonal. It was proven in Lee and Tsuha’ that ®.4 are captured exactly in ®4q
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despite the augmentations of the projected component models with residual modes. The

matrix Agq also contains a number of extraneous modes.®

3.2 System Level Augmentation

The equation (9) may be decomposed into its kept and truncated parts:
Texér + Axkdr = 74 Gea tia
Ittﬁ.{;t + Att¢t = (DZ: Gea Ug -

The mode set ®.;, which is truncated, will now be replaced by a smaller but statically

(36)

equivalent mode set ®.q. To find ®.,, consider the following Ritz transformation®
¢t = Reada s (37)
where R;q = A;;l CI’z; Gea -
Here ¢, is the generalized coordinate associated with the augmented mode set $.q. It
can be shown that the static gain due to the mode set [®ex Pea] = [®ex PetRiq) is identical
to that of the original system (cf. (9)).° Hence, [®ex ®etRia] is 2 statically complete mode

set.

Several observations regarding the augmented mode set [®ex Pet Ria] arein order. First,
note that the augmented mode set contains two parts. The first part contains a selected
number of eigenvectors which satisfy the eigenvalue problem defined by Me. and K... The
second part is formed using the residual flexibility matrix and the distribution matrix of the

external load. Hence, ®.; R4, unlike ®.x, is a function of the external load distribution.

Next, we observe that ®.; Ry, is identical to the residual mode defined in Section 2.2.
Also, note that this mode set is mass and stiffness orthogonal to the retained mode set ®ex.
Hence, the two parts of the augmented mode set are linearly independent. This statically
complete mode set is now ready for projections onto the various flexible component models
to generate reduced-order component models. The reduced-order component models may
then be assembled to generate the reduced-order system model using the procedures outlined

in Section 3.1.

4. Applying COMPARE on A High-order Finite-element Galileo Model

The effectiveness of the proposed COMPARE methodology will now be demonstrated

using a high-order finite-element model of the cruise-configured Galileo spacecraft. The
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three-body topology of the dual-spin Galileo spacecraft is illustrated in Fig. 3.7 The rotor
is the largest and most flexible component represented, with 243 dof. The smaller and
more rigid stator is represented with 57 dof. Lastly, the scan platform is the smallest body
idealized as rigid, with 6 dof.

For the purpose of controller design, a low-order system model, accurate at all config-
urations of interest and over a frequency range of interest (0-10 Hz) is needed. To this end,
we apply the MacNeal-Rubin version of the COMPARE methodology on the Galileo model.
The first stage of COMPARE requires the generation of M-R mode sets for all the flexible
components. Following standard procedures, free interface normal modes of both the rotor
and stator are first determined, and then truncated at twice the frequency of interest (20
. Hz). Next, these truncated normal mode sets are each augmented with residual modes to

generate the needed M-R mode sets for both the stator and rotor.

Next, the MacNeal-Rubin mode sets and the interface compatibility conditions are used
to construct system models at all system configurations of interest, and determine from them
important system-level modes at all clock angles of interest. The selected composite mode

set has 8 rigid-body and 21 flexible modes.

The next step is to augment the composite mode set with one or more static-correction
modes. For the Galileo example, we augment the composite mode set with two residual
modes, one for an input torque about the Z-axis on the rotor side of the rotor/stator interface,
and a second equal and opposite torque on the stator side of the interface. The enlarged
mode set is then projected onto the flexible components. The resultant reduced-order models
of the rotor and stator have 29 (with 6 rigid-body) and 21 (with 8 rigid-body) modes,
respectively. The assembled reduced-order model has 44 (with 8 rigid-body) modes. The
natural frequencies of these reduced-order component models and of the system model at a
clock angle of 300 degrees are tabulated in Table 1. All system flexible modes retained in

the composite mode set have been captured exactly in the reduced-order system model.

Comparisons of Bode plots of full-order and reduced order models, at clock angles of
60, 180, and 300 degrees, are given in Figs. 4, 5, and 6 respectively. Actuation was done
at the Spin Bearing Assembly (SBA) located at the rotor-stator interface (along the Z-axis,
cf. Fig. 3), and sensing was done by a gyroscope located on the scan platform. From

these comparisons, we observe that the frequency responses of the full-order models, at all
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configurations of interest, have been closely captured by their reduced-order counterparts,
over the frequency range of interest (0-10 Hz). Results obtained at other clock angles are

similar to those depicted in Figs. 4-6.

5. Concluding Remarks

A two-stage model reduction methodology, called COMPARE, 1s proposed in this re-
search. The first stage of this methodology involves the generation of CMS mode sets for
the flexible components. The resultant component models are then combined to generate
reduced-order system models at various system configurations. A composite mode set which
retains important system modes at all system configurations is then determined from these
reduced order system models. In the second stage, the EP&A model reduction method is

employed to reduce further the order of the system model generated in the first stage.

The merit of the COMPARE methodology is that system models (at various system
configurations) assembled using CMS-generated component models are smaller in size than
the full-order system models. Hence, COMPARE alleviates the need to solve large-order
eigenvalue problems repetitively. The need to generate the components’ M-R or C-B mode
sets is not a disadvantage because efficient software exists for their construction (see, e.g.,
Tsuha®). The effectiveness of COMPARE, using the M-R version of COMPARE, has been
successfully demonstrated on a high-order, finite-element model of the cruise-configured

Galileo spacecraft.
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Table 1 Frequencies of Reduced-order Stator, Rotor,

and System (at a Clock Angle of 300 degrees) Flexible Modes

Flexible Mode

Wstator (HZ)

Wrotor (HZ)

Wsystem (HZ)

1 7.105 0.143 0.127
2 9.129 0.866 0.864"
3 10.561 1.237 1.2367
4 14.560 1.483 1.479%
5 43.172 1.728 1.7071
6 50.070 2.286 1.7341
7 63.530 2.809 2.0721
8 80.867 3.647 2.3511
9 86.989 3.996 2.8151
10 96.605 5.207 3.7077
11 166.34 5.337 4.167
12 240.18 5.994 52317
13 254.52 6.410 5.433
14 9.503 5.4677
15 10.291 6.150
16 10.553 6.436
17 13.536 7.056%
18 15.613 8.1537
19 20.188 9.6067
20 41.181 9.613
21 58.524 10.294
22 69.003 10.420"
23 77.722 10.5557
24 13.5341
25 13.997
26 15.860
27 16.8007
28 20.591
29 ) 21.280%
30 28.462
31 34.316
32 41.214
33 48.011
34 58.318
35 71.7701
36 82.1291

t Exactly captured system flexible modes.
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Component B
Component A

1/F

o z;, Interface Coordinates

¢ z;, Interior Coordinates

Fig. 2 Coordinate Definitions of A Z—Component System
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ROTOR
(Flexibie)

Bz (Output) STATOR
(Flexible)

Fig. 3 Galileo Spacecraft Cruise Mode]*:5"
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